

This black book is dedicated to my

greyhound, Sweep, who is also black.

A practically useless but improbably

loveable creature, she is two parts bat

and one part hairy dragon. I rescued

her and I think she rescued me, since

my other black dog, Depression,

seemed to leave when she arrived. I’ll

miss her when she is gone."

Published 2019 by Smashing Media AG, Freiburg, Germany.

All rights reserved.

ISBN: 978-3-945749-82-1

Cover design: Heydon Pickering

Copyediting: Owen Gregory

Interior layout: Alex Clarke, Markus Seyfferth

Ebook production: Heydon Pickering

Inclusive Components was written by Heydon Pickering.

Please send errors to: errata@smashingmagazine.com

Contents

Introduction: A personal note

Toggle Buttons

A To-do List

Menus and Menu Buttons

Tooltips and Toggletips

A Theme Switcher

Tabbed Interfaces

Collapsible Sections

A Content Slider

Notifications

Data Tables

Modal Dialogs

Cards

0

1

2

3

4

5

6

7

8

9

10

11

12

4

8

37

70

105

127

143

166

196

233

253

282

301

Introduction: A personal note

I am not a computer scientist. I have no idea how to grow a

computer in a test tube, or how to convert the mysterious

breast-enlarging substance ‘silicone’ into a semi-sentient

logic machine. Or whatever it is computer scientists do.

That’s not to say I haven’t been around computers since, well,

Lemmings. In fact, my Dad helped me build my first computer,

because building computers was a thing back then. It just

turns out I can use my computer without having to know the

entire history of computing, or by remembering where each

board and connector inside the beige metal box goes, or why.

Some very clever people — mostly women — gave us com-

puters. Good, thank you. Now let’s get to work.

It’s been a good decade since anyone assumed I would know

how to fix their computer just because I bought my computer

before they did theirs. Which leads me to think we’ve moved

away from that era where everyone was clumsily divided into

computery and not computery. But that makes it all the more

astonishing that the world of professional web development is

so fond of that binary.

4 Introduction

Me in, I don’t know, 1988 probably?

The ascendant Full Stack Developer is someone who does all

the code things. They are code’s gatekeepers. Considering the

sheer scale of our project to digitize the entirety of human

experience into multivarious simulacra, I think that’s rather a

lot for any individual to take on.

You can do all the code, but only if you don’t do it all well.

There’s just too much to learn to be an expert in everything.

So when we hire generalist coders, we create terrible products

and interfaces. The web isn’t inaccessible because web acces-

sibility is especially hard to learn or implement. It’s inaccessi-

ble because it’s about the code where humans and computers

meet, which is not a position most programmers care to be in,

or are taught how to deal with. But they’re the coders so it’s

their job, I guess.

A Personal Note 5

Like I said, I’m not a computer scientist, but I learned to code

because I started to work with the web. It was my respon-

sibility to learn how to code, because code is what the web

is made of. But the code of the web is not all the code of

classical computer science, and should not be judged on the

same terms. HTML is the code of writers, and CSS the code of

graphic designers. Writers and designers are best positioned

to write those kinds of code.

This book, an anthology of updated and expanded blog

posts originally written for inclusive-components.design,1

is designed to help you catch up on the kind of coding not

taught in Java 101: the code of communication, interaction,

and most of all accommodation. There’s a lot of code in this

book, but it’s all code bent towards one specific goal: making

interfaces more usable to more and different people. That’s

the only code I really know.

I dedicate this book to all the artists, designers, and humani-

ties scholars who contribute code to the web. I also dedicate

it to full stack developers, because you folks may have bitten

off more than you can chew. And it’s not your fault, it’s the

culture of expectation around you. Hopefully this will help to

keep your heads above water, at least in terms of inclusive

interface design.

1 http://inclusive-components.design

6 Introduction

http://inclusive-components.design

Thank you to all the people who have read and shared the

articles from the blog, and especially to those who have

helped fund its writing. Writing is my favorite thing, whether

it’s natural language or code. I’m just lucky that English is

my first language, because it takes me forever to learn the

syntax of anything. If you wish to translate the book, please

contact me using heydon@heydonworks.com, find me on

Twitter as @heydonworks, or on Mastodon as

@heydon@mastodon.social.

Yours — Heydon

A Personal Note 7

Collapsible Sections

Collapsible sections are perhaps the most rudimentary

of interactive design patterns on the web. All they do

is let you toggle the visibility of content by clicking

that content’s label. Big whoop.

Although the interaction is simple, it’s an interaction that does

not have a consistent native implementation across brows-

ers59 — despite movement to standardize it. It is therefore

a great “hello world” entry point into accessible interaction

design using JavaScript and WAI-ARIA.

So why am I talking about it now, after covering more com-

plex components? Because this article will focus on developer

and author experience: we’re going to make our collapsible

regions web components, so they are easy to include as part

of larger patterns and in content files.

As we did when approaching tab interfaces, it helps to

consider what our component would be in the absence of

JavaScript enhancement and why that enhancement actually

makes things better. In this case, a collapsible section without

JavaScript is simply a section. That is, a subheading introduc-

ing some content — prose, media, whatever.

59 https://smashed.by/caniusedetails

166 Chapter 7

<h2>My section</h2>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Cras efficitur laoreet massa. Nam eu porta

dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

<p>Cras mi #nisl, semper ut gravida sed, vulputate vel

mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

One advantage of collapsing the content is that the headings

become adjacent elements, giving the user an overview of

the content available without having to scroll nearly so much.

Expanding the content is choosing to see it.

Collapsible Sections 167

Another advantage is that keyboard users do not have to step

through all of the focusable elements on the page to get to

where they want to go: hidden content is not focusable.

The adapted markup
Just attaching a click handler to the heading for the purposes

of expanding the associated content is foolhardy, because

it is not an interaction communicated to assistive software

or achievable by keyboard. Instead, we need to adapt the

markup by providing a standard button element.

<h2><button>My section</button></h2>

<div>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras efficitur laoreet massa. Nam eu

porta dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

 <p>Cras mi nisl, semper ut gravida sed, vulputate

vel mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

</div>

(Note: I have wrapped the content in a <div>, in preparation

for showing and hiding it using the script to follow.)

168 Chapter 7

The button is provided as a child of the heading. This means

that, when a screen reader user focuses the <button>, the

button itself is identified but also the presence of its parent:

“My section, button, heading level 2” (or similar, depending

on the screen reader).

Had we instead converted the heading into a button using

ARIA’s role="button" we would be overriding the heading

semantics. Screen reader users would lose the heading as a

structural and navigational cue.

In addition, we would have to custom-code all of the browser

behaviors <button> gives us for free, such as focus (see

tabindex in the example below) and key bindings to actually

activate our custom control.

<!-- DON'T do this -->

<h2 role="button" tabindex="0">My section</h2>

Collapsible Sections 169

STATE
Our component can be in one of two mutually exclusive

states: collapsed or expanded. This state can be suggested

visually, but also needs to be communicated non-visually. We

can do this by applying aria-expanded to the button, initially

in the false (collapsed) state. Accordingly, we need to hide

the associated <div> — in this case, with hidden.

<h2><button aria-expanded="false">My section</

button></h2>

<div hidden>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras efficitur laoreet massa. Nam eu

porta dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

 <p>Cras mi nisl, semper ut gravida sed, vulputate

vel mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

</div>

Some make the mistake of placing aria-expanded on the

target element rather than the control itself. This is under-

standable since it is the content that actually switches state.

But, if you think about it, this wouldn’t be any good: the user

would have to find the expanded content — which is only

possible if it’s actually expanded! — and then look around for

an element that might control it. State is, therefore, communi-

cated through the control that one uses to switch it.

170 Chapter 7

IS THAT ALL THE BUTTON ARIA?

Why yes. We don’t need to add role=“button” because the

<button> element implicitly has that role (the ARIA role is

just for imitating the native role). And unlike menu buttons, we

are not instigating an immediate change of context by moving

focus. Therefore, aria-haspopup is not applicable.

Some folks add aria-controls and point it to the content

container’s id. Be warned that aria-controls only works in

JAWS60 at the time of writing. So long as the section’s content

follows the heading/button in the source order, it isn’t needed.

The user will (immediately) encounter the expanded content

as they move down the page.

STYLING THE BUTTON
We’ve created a situation wherein we’ve employed a button,

but a button that should look like an enhanced version of the

heading it populates. The most efficient way to do this is to

eradicate any user agent and author styles for buttons, forcing

this button to inherit from its heading parent.

h2 button {

 all: inherit;

}

60 https://smashed.by/ariacontrols

Collapsible Sections 171

Great, but now the button has no affordance.61 It doesn’t look

like it can be activated. This is where, conventionally, a plus/

minus symbol is incorporated. Plus indicates that the section

can be expanded, and minus that it may be collapsed.

The text label and/or icon for a button should always show what

pressing that button will do, hence the minus sign in the expanded

state indicating that the button will take the section content away.

61 https://smashed.by/affordances

172 Chapter 7

The question is: how do we render the icon? The answer: as

efficiently and accessibly as possible. Simple shapes such as

rectangles (<rect>) are a highly efficient way to create icons

with SVG, so let’s do that.

<svg viewBox="0 0 10 10">

 <rect height="8" width="2" y="1" x="4"/>

 <rect height="2" width="8" y="4" x="1"/>

</svg>

There, that’s small enough to fit in a tweet. Since the

parent button is the control, we don’t need this graphic

to be interactive. In which case, we need to add the

focusable="false" attribute, which prevents Internet

Explorer and early versions of Edge from putting the SVG in

focus order.

<button aria-expanded="false">

 My section

 <svg viewBox="0 0 10 10" focusable="false">

 <rect class="vert" height="8" width="2" y="1"

x="4"

 />

 <rect height="2" width="8" y="4" x="1" />

 </svg>

</button>

Collapsible Sections 173

Note the class of “vert” for the rectangle that represents the

vertical strut. We’re going to target this with CSS to show and

hide it depending on the state, transforming the icon between

a plus and minus shape.

[aria-expanded="true"] .vert {

 display: none;

}

Tying state and its visual representation together is a very

good thing. It ensures that state changes are communicated

interoperably. Do not listen to those who advocate the

absolute separation of HTML semantics and CSS styles. Form

should follow function, and directly is most reliable. It’s also

more efficient, because there’s one less attribute to augment.

button.setAttribute('aria-expanded', !expanded);

// Not needed ↓

button.classList.toggle('expanded');

Note that the default focus style was removed with

inherit: all. We can delegate a focus style to the SVG with

the following:

174 Chapter 7

h2 button:focus svg {

 outline: 2px solid;

}

High contrast themes

One more thing: we can ensure the <rect> elements respect

high contrast themes. By applying a fill of currentColor to

the <rect> elements, they change color with the surrounding

text when it is affected by the theme change.

[aria-expanded] rect {

 fill: currentColor;

}

To test high contrast themes against your design on Windows,

search for High contrast settings and apply a theme from

Choose a theme. Many high contrast themes invert colors to

reduce light intensity. This helps folks who suffer migraines

or photophobia, as well as making elements clearer to those

with vision impairments.

Collapsible Sections 175

Why not use <use>?

If we had many collapsible regions on the page, reusing the

same SVG <pattern> definition via <use> elements62 and

xlink:href would reduce redundancy.

<button aria-expanded="false">

 My section

 <svg viewBox="0 0 10 10 aria-hidden="true"

focusable="false">

 <use xlink:href="#plusminus" />

 </svg>

</button>

Unfortunately, this would mean we could no longer target the

specific .vert rectangle to show and hide it. By using little

code to define each identical SVG, bloat is not a big problem

in our case.

62 https://smashed.by/uselement

A SMALL SCRIPT
Given the simplicity of the interaction and all the elements

and semantics being in place, we need only write a very

terse script:

(function() {

 const headings = document.querySelectorAll('h2');

 Array.prototype.forEach.call(headings, h => {

 let btn = h.querySelector('button');

 btn.onclick = () => {

 let expanded = btn.getAttribute('aria-expanded')

 === 'true';

 btn.setAttribute('aria-expanded', !expanded);

 target.hidden = expanded;

 }

 })

})()

Demo: Basic collapsible sections63

63 https://smashed.by/collapsiblesectionsdemo

Collapsible Sections 177

PROGRESSIVE ENHANCEMENT
The trouble with the script above is that it requires the HTML

to be adapted manually for the collapsible sections to work.

Implemented by an engineer as a component via a template

or JSX, this is expected. However, for largely static sites like

blogs there are two avoidable issues:

• If JavaScript is unavailable, there are interactive

elements in the DOM that don’t do anything, with

semantics that therefore make no sense.

• The onus is on the author/editor to construct the

complex HTML.

Instead, we can take basic prose input (say, written in

Markdown or in a WYSIWYG) and enhance it after the

fact with the script. This is quite trivial in jQuery given the

nextUntil and wrapAll methods, but in plain JavaScript we

need to do some iteration. Here’s another demo that automat-

ically adds the toggle button and groups the section content

for toggling. It targets all <h2>s found in the <main> part of

the page.

Demo: Progressive collapsible sections64

64 https://smashed.by/progcollapsiblesections

178 Chapter 7

Why write it in plain JavaScript? Because modern browsers

support Web API methods very consistently now, and because

small interactions should not depend on large libraries.

A progressive web component
The last example meant we didn’t have to think about our

collapsible sections during editorial; they’d just appear

automatically. But what we gained in convenience, we lost

in control. Instead, what if there was a compromise wherein

there was very little markup to write, but what we did write

let us choose which sections should be collapsible and what

state they should be in on page load?

Web components could be the answer. Consider the following:

<toggle-section open="false">

 <h2>My section</h2>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras efficitur laoreet massa. Nam eu

porta dolor. Vestibulum pulvinar lorem et nisl tempor

lacinia.</p>

 <p>Cras mi nisl, semper ut gravida sed, vulputate

vel mauris. In dignissim aliquet fermentum. Donec arcu

nunc, tempor sed nunc id, dapibus ornare dolor.</p>

</toggle-section>

Collapsible Sections 179

The custom element name is easy to remember, and the open

attribute has obvious implications. Better still, where Java-

Script is unavailable, this outer element is treated like a mere

<div> and the collapsible section remains a simple section.

No real harm done.

In fact, if we detect support for the <template> element and

attachShadow within our script, the same fallback will be

presented to browsers not supporting these features.

if ('content' in document.createElement('template')) {

 // Define the <template> for the web component

 if (document.head.attachShadow) {

 // Define the web component using the v1 syntax

 }

}

Frameworks or web components?

The promise of web components is that you should be able

to create components like you would in React or Vue, but in

native code. Fewer dependencies, and faster to run.

180 Chapter 7

However, as noted in “The Case for React-like Web Compo-

nents,”65 web components are limited when in comes to data

binding and state.

Nonetheless, there’s a good case for writing at least your

functional components as web components. The more of your

design system that’s written in native code, the more interop-

erable, reusable, and future-proof it is.

THE TEMPLATE
We could place a template element in the markup and refer-

ence it, or create one on the fly. I’m going to do the latter.

tmpl.innerHTML = `

 <h2>

 <button aria-expanded="false">

 <svg aria-hidden="true" focusable="false"

viewBox="0 0 10 10">

 <rect class="vert" height="8" width="2" y="1"

x="4"/>

 <rect height="2" width="8" y="4" x="1"/>

 </svg>

 </button>

 </h2>

 <div class="content" hidden>

 <slot></slot>

 </div>

65 https://smashed.by/reactwebcomponents

Collapsible Sections 181

 <style>

 h2 {

 margin: 0;

 }

 h2 button {

 all: inherit;

 box-sizing: border-box;

 display: flex;

 justify-content: space-between;

 width: 100%;

 padding: 0.5em 0;

 }

 button svg {

 height: 1em;

 margin-left: 0.5em;

 }

 [aria-expanded="true"] .vert {

 display: none;

 }

 [aria-expanded] rect {

 fill: currentColor;

 }

 </style>

This template content will become the Shadow DOM subtree

for the component.

182 Chapter 7

By styling the collapsible section from within its own

Shadow DOM, the styles do not affect elements in Light

DOM (the standard, outer DOM). Not only that, but they are

not applied unless the browser supports <template> and

custom elements.

DEFINING THE COMPONENT
Note the <slot> element in the template HTML, which is a

window to our Light DOM. This makes it much easier to wrap

the content provided by the author than in the previous pro-

gressive enhancement demo.66

Inside the component definition, this.innerHTML refers to

this Light DOM content. We shall create a shadowRoot and

populate it with the template’s content. The Shadow DOM

markup is instead found with this.shadowRoot.innerHTML.

class ToggleSection extends HTMLElement {

 constructor() {

 super()

 this.attachShadow({ mode: 'open' })

 this.shadowRoot.appendChild(tmpl.content.

cloneNode(true))

 }

}

66 https://smashed.by/progcollapsiblesections

Collapsible Sections 183

With these references, we can move Light DOM to Shadow

DOM. Which means we can repurpose the Light DOM <h2>’s

label and eliminate the now superfluous element. It probably

seems dirty doing this DOM manipulation — especially when

you're used to simple, declarative (React) components. But it’s

what makes the web component progressive.

this.btn = this.shadowRoot.querySelector('h2 button');

var oldHeading = this.querySelector('h2');

var label = oldHeading.textContent;

this.btn.innerHTML = label + this.btn.innerHTML;

oldHeading.parentNode.removeChild(oldHeading);

Actually, we can do one better and support different introduc-

tory heading levels. Instead of targeting headings at all, we

can just get the first element in the Light DOM. Making sure

the first element is a heading would be a matter for editorial

184 Chapter 7

guidance. However, if it’s not a heading, we can make good of

any element — as I shall demonstrate.

var oldHeading = this.querySelector(':first-child')

Now we just need to make sure the level for the Shadow DOM

heading is faithful to the Light DOM original. I can query the

tagName of the Light DOM heading and augment the Shadow

DOM level with aria-level accordingly.

let level = parseInt(oldHeading.tagName.substr(1));

this.heading = this.shadowRoot.querySelector('h2');

if (level && level !== 2) {

 this.heading.setAttribute('aria-level', level);

}

The second character of tagName is parsed as an integer.

If this is a true integer (NaN is falsey) and isn't the 2 offered

implicitly by <h2>, aria-level is applied. As a fallback, a

non-heading element still gives up its textContent as the

label for the extant Shadow DOM <h2>. This can be accompa-

nied by a polite console.warn, advising developers to use a

heading element as a preference.

Collapsible Sections 185

if (!level) {

 console.warn('The first element inside each <toggle-

section> should be a heading of an appropriate

level.');

}

One advantage of using aria-level is that, in our case, it is

not being used as a styling hook — so the appearance of the

heading/button remains unchanged.

<h2 aria-level="3">

 <button aria-expanded="false">

 <svg aria-hidden="true" focusable="false"

viewBox="0 0 10 10">

 <rect class="vert" height="8" width="2" y="1"

x="4"/>

 <rect height="2" width="8" y="4" x="1"/>

 </svg>

 </button>

</h2>

If you wanted your collapsible section headings to reflect

their level, you could include something like the following in

your CSS:

186 Chapter 7

toggle-section [aria-level="2"] {

 font-size: 2rem;

}

toggle-section [aria-level="3"] {

 font-size: 1.5rem;

}

/* etc */

The region role

Any content that is introduced by a heading is a de facto

(sub)section within the page. But, as I covered in chapter 2,

“A To-do List”, you can create explicit sectional container

elements in the form of <section>. You get the same effect

by applying role="region" to an element, such as our

custom <toggle-section> (which otherwise offers no such

accessible semantics).

<toggle-section role="region">

 ...

</toggle-section>

Screen reader users are more likely to traverse a document

by heading than region67 but many screen readers do provide

region shortcuts. Adding role="region" gives us quite a bit:

67 https://smashed.by/screenreadersurvey

Collapsible Sections 187

• It provides a fallback navigation cue for screen reader

users where the Light DOM does not include a heading.

• It elicits the announcement of "region" when the

screen reader user enters that section, which acts as a

structural cue.

• It gives us a styling hook in the form toggle-

button[role="region"]. This lets us add styles we only

want to see if the script has run and web components

are supported.

TETHERING OPEN AND ARIA-EXPANDED
When the component’s open attribute (a Boolean) is

added or removed, we want the appearance of the con-

tent to toggle. By harnessing observedAttributes() and

attributeChangedCallback() we can do this directly. We

place this code after the component’s constructor:

get open() {

 return this.hasAttribute('open');

}

set open(val) {

 if (val) {

 this.setAttribute('open', '');

 } else {

 this.removeAttribute('open');

 }

188 Chapter 7

}

static get observedAttributes() {

 return ['open']

}

attributeChangedCallback(name) {

 if (name === 'open') {

 this.switchState();

 }

}

• observedAttributes() takes an array of all the

attributes on the parent <toggle-section> that we wish

to watch

• attributeChangedCallback(name) lets us execute

our switchState() function in the event of a change

to open

The advantage here is that we can toggle state using a script

that simply adds or removes open, from outside the com-

ponent. For users to change the state, we can just flip open

inside a click function:

this.btn.onclick = () => {

 this.toggleAttribute('open');

}

Collapsible Sections 189

Since the switchState() function augments the

aria-expanded value, we have tethered open to

aria-expanded, making sure the state change is accessible.

this.switchState = () => {

 let expanded = this.hasAttribute('open');

 this.btn.setAttribute('aria-expanded', expanded);

 this.shadowRoot.querySelector('.content').hidden =

!expanded;

}

Demo: Web component with additional expand/

collapse all functionalities68

EXPAND/COLLAPSE ALL
Since we toggle <toggle-section> elements via their open

attribute, it’s trivial to afford users an ‘expand/collapse all’

behavior. One advantage of such a provision is that users who

have opened multiple sections independently can reset to an

initial, compact state for a better overview of the content. By

the same token, users who find fiddling with interactive ele-

ments distracting or tiresome can revert to scrolling through

open sections.

68 https://smashed.by/expandcollapseall

190 Chapter 7

It’s tempting to implement ‘expand/collapse all’ as a single

toggle button. But we don’t know how many sections will

initially be in either state. Nor do we know, at any given time,

how many sections the user has opened or closed manually.

Instead, we should group two alternative controls.

<ul class="controls">

 <button id="expand">expand all</button>

 <button id="collapse">collapse all</button>

It’s important to group related controls together, and lists are

the standard markup for doing so. (See also chapter 3 “Menus

and Menu Buttons” on page 70.) Lists and list items tell screen

reader users when they are interacting with related elements

and how many of these elements there are.

Some compound ARIA widgets have their own grouping

mechanisms, like role="menu" grouping role="menuitem"

elements, or role="tablist" grouping role="tab"

elements. Our use case does not suit either of these

paradigms, and a simple list suffices.

Arguably, a group label should be provided to the con-

trols as well. I don’t believe it’s necessary here because

the individual labels are sufficiently descriptive. It is possi-

ble, to use aria-label and aria-labelledby with

elements, however.

Collapsible Sections 191

TRACKING THE URL
One final refinement.

Conventionally, and in the absence of JavaScript enhance-

ment, users are able to follow and share links to specific

page sections by their hash. This is expected, and part of the

generic UX of the web.

Most parsers add id attributes for this purpose to heading

elements. As the heading element for a target section in our

enhanced interface may be inside a collapsed/unfocusable

section, we need to open that to reveal the content and move

focus to it. The connectedCallback() life cycle lets us do

this when the component is ready. It’s like DOMContentLoaded

but for web components.

connectedCallback() {

 if (window.location.hash.substr(1) === this.heading.

id) {

 this.setAttribute('open', 'true');

 this.btn.focus();

 }

}

192 Chapter 7

Note that we focus the button inside the component’s head-

ing. This takes keyboard users to the pertinent component

ready for interaction. In screen readers, the parent heading

level will be announced along with the button label.

Further to this, we should be updating the hash each time the

user opens successive sections. Then they can share the spe-

cific URL without needing to dig into dev tools (if they know

how!) to copy/paste the heading’s id. Let’s use pushState to

dynamically change the URL without reloading the page:

this.btn.onclick = () => {

 let open = this.getAttribute('open') === 'true';

 this.setAttribute('open', open ? 'false' : 'true');

 if (this.heading.id && !open) {

 history.pushState(null, null, '#' + this.heading.

id);

 }

}

Demo: Final version, with history (hash tracking)69

(Note that the presence of the open property will mean the

section is open, regardless of whether it matches the URL #)

69 https://smashed.by/withhistory

Collapsible Sections 193

Conclusion
Your role as an interface designer and developer (yes, you

can be both at the same time) is to serve the needs of the

people receiving your content and using your functionality.

These needs encompass both those of end users and fellow

contributors. The product should, of course, be accessible

and performant, but maintaining and expanding the product

should be possible without esoteric technical knowledge.

Whether implemented through web components or not, pro-

gressive enhancement not only ensures the interface is well

structured and robust. As we’ve seen here, it can also simplify

the editorial process. This makes developing the application

and its content more inclusive.

194 Chapter 7

CHECKLIST

• Don’t depend on large libraries for small interactions,

unless the library in question is likely to be used for

multiple other interactive enhancements.

• Do not override important element roles. See the second

rule of ARIA use.70

• Support high contrast themes in your SVG icons

with currentColor.

• If the content is already otherwise static, there is

a good case for basing your web component on

progressive enhancement.

• Do please come up with more descriptive labels for

your sections than “Section 1”, “Section 2” etc. Those are

just placeholders!

70 https://smashed.by/2ndrule

Collapsible Sections 195

The world is a miracle. So are you.

Thanks for being smashing.

More From Smashing Magazine

• Apps For All: Coding Accessible Web Applications

by Heydon Pickering

• Art Direction For The Web

by Andy Clarke

• Design Systems

by Alla Kholmatova

• Digital Adaptation

by Paul Boag

• Form Design Patterns

by Adam Silver

• Inclusive Design Patterns

by Heydon Pickering

• Smashing Book #6: New Frontiers in Web Design

by Laura Elizabeth, Marcy Sutton, Rachel Andrew, Mike

Riethmueller, Harry Roberts, and others.

• The Sketch Handbook

by Christian Krammer

• User Experience Revolution

by Paul Boag

Visit smashingmagazine.com/printed-books/ for our full

list of titles.

	Table of Contents
	Introduction
	Toggle Buttons
	A To-do List
	Menus and Menu Buttons
	Tooltips and Toggletips
	A Theme Switcher
	Tabbed Interfaces
	Collapsible Sections
	A Content Slider
	Notifications
	Data Tables
	Modal Dialogs
	Cards

